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Background: There are many ways to represent i mole-
cule’s propertics, including atomic-connectivity drawings,
NMR spectra. and molecular orbital models. Priov

methods for predicting the biological activity of com-
pounds have lirgely depended on these physical represen-

tacions. Measurig a compound's binding potency against

asoall reference panel of diverse proteins defines a very
ditferent representation of the molecule, which we call an
affinity fingerprint. Statistical analysis of such fingerprine
provides new insights into aspects of binding neractions
that arc shared among & wide variety of proteins. These
analyvses facilinate predicdon of the binding properties of
these compounds assaved against new proteins.

Results: Affinity ingerprints are reported for 122 sorue-
wrally diverse compounds using a reference panel of
cight proteins that collectively are able o gencrawe
unique tingerprints for about 75 % of the small organic
compounds tested. Application of multivariate regression
technicuces to this darabase enables the creation of com-

purational surrogates to represent new protens that are
surprisingly effective ar predicting binding potencies. We
illostrate this for two enzymes with no previously
recognizable suntlarity to cach other or to any of the ref

erence proteins. Fitting of smalogous compurational sur-
rogates to four other protemns confirms the generality of
the method; when applied to a fingerprinted library of
3000 compounds. several sub-mucromolar it were
correctly predicted.

Conclusions: An affinity fingerpring database. wlhich
providesa rich source of data defining operational simi-
laritics amony proteins. can be used to test theories of
crvptic homology unexpected from current understand

ing of protein structure. Pracrical applications 1o drug
dusign include efficient pre-serecning of large miabess
of compounds against target protenis using fingerprine
similarivies, supplemented by @ small pumber of cmpiri-
cal measurenients. to select promisimyg compounds for
further study
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Introduction
We deseribe here a strategy for identifving functional
similarities i the binding sites of proteins that are unre-
lated by standard measures of structural homology. Since
numerous drugs have been shown to cross-react to
varying extents with proteins other than their ostensible
target [1]. contributing to unwanted side effects, identify-
ing tunctional similarities among proteins is fundamen-
wlly mportant to drug design. A large database of
cross-reactivities can be generated |

- choosimg a diverse
set of proteins that are all casy to assay. thereby enabling a

variety of studies.

One way to anmalvze the data involves selection of
subset of compounds that have fingerprints that are all
quite different from each other. Sinece the fingerprings
retlect protein-binding properties, such 2 deliberately
vavied subset is useful as a core screening library. Using a
small set of reference proteins, that were carefully
selected to be representative of a much larger col-
lection of proteins, we have fingerprinted over 3000

compounds; each tingerprint i the pattern of binding of
a single compound ta the reference panel of proteins,
From this database, we selected a very small core screen-
g library of 54 compounds based on the diversity in
their fingerprints, which we designate as o training set.
By physically assaving the maiming set of compounds for
their binding to a new target protein, we obtain data thae
can be compared to the binding of the training set w the
reference proteins. Mathematically, this comparison vields
a computational surrogate of the target which deseribes
the target i terms of its partial shonlarities to the various
reference proteins. The surrogate created wich only the
data on the training compounds can then be used o
predice the binding of all the other compounds in the
database to the target,

Formally, the new representation of molecules defined
hiere as an affinity fingerprint consists of the collection
of binding potencies (1€

) against a panel of reference
proteis (IR, L0 R ), where the panel members

have been empirically selected to provide binding sites
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Table 1, Compound library subjectively organized by prominent structural features.

Code Compound Name
Amines

Al Butacaine

A2 4,4 -Diaminadiphenyl sulfone
A3 p-Dimethylamino-

benzylaldehyde
Ad 4,4'-Bisidimethyl-
amino)benzhydrol

A3 Dipyridamole
A6 Fendiline

A7 Glafenine
Cephalosporins

al Cephaloglycin
C2 Cephapirin
a3 Cephalothin
C4 Cephradine
C5 Cephaloridine

Co Cefoperazone
7 Cefaclor
Dves

D1 Cibacron brilliant red 3BA

D2 Cibacron brilliant yellow 3GP

D3 Acridine orange
hydrochloride hydrate

D4 Phenyl 9-acridinecarboxylate

D5 Pyrocatechol violet

Aliphatics

F1 3-Hydroxy-1-methy[piperidine
IF2 Fertilysin

Aromatic heterocyclics

H1 6,7-Dimethyl-s,3-di-{2-pyridyl}-
quinoxaline
H2 Harmaline

H3 Quinine
H4 8-Chloratheophylline

H5 Murexide

Conjugated aromatics

n 2,2'(1,3-Indenedi-formyl)
dibenzoic acid

]2 Citrinin

13 N-(2-Amino-4-chloro-
phenylianthranilic acid

14 Lasalocid

15 Quinaldic acid

16 Xanthurenic acid

7 o-Cyano-3-
hydroxycinnamic acid

18 Flumequine

19 Nalidixic acid

J10 Norfloxacin

Ketones

K1 5,5'"-Dibromosalicil

K2 4,5 Diphenyl-1,3-
dioxolan-2-one

K3 Chalcune

K4 Ketotifen

K5 2-Hydroxy-3-(naphthyi)-1,4-
napthoguinone

Code
K6
K7

Phenols
L1
L2
L3
L4
L5

Amides
M1

M2
M3
M4
M5
Mo
M7

Compound Name

1,2,3,4-Tetrafluoro-5,8-
dihydroxy-anthraquinonc
Scopolctin

Nordibydroguaiaretic acid
Dienestrol

Calechin

Naringenin

Hesperetin

o-(4-Chlorophenyl-aidihydro-
oxo-pyridylmethyli-imidazolyl
benzyl alcoho!
1,3-Di-p-tolyl-2-thiourea
Dansylamide

Nimesulide

Chloramphenicol base
Colchicine

Oxolamine

Nitro-aromatics

N1
N2

N8

Peptides
P1
P2
P3
P4
P3
Pa

P7

Steroids
51

§2
53
S4
S5
S6
57
58

Triazines

m

12

5-(4-Nitrophenyl)-2-furoic acid
N-(4-Dimethylamino-3,5-dinitro
phenyli-maleimide
4,5-Dichloro-2-nitroaniline
2-(2,4-Dinitrostyryl) thiophene
tert-Butyl 5-nitro-2-thiophene
carboxylate
4-Nitro-N-(2-thienyl-
methylenejaniline
N-{5-Nitro-2-pyridyl)-3,4,5,6-
tetrachlorophthalamic acid
N-(5-Nitro-3-pyridyl)
phthalamic acid

¥-Glu-S-hexyl Cys-Glu
¥-Glu-S-hexyl Cys-Phe Gly
¥-Glu-S-hexyl Cys-B-Ala
¥-Glu-S-octyl Cys-Gly
y-Glu-S-butyl Cys-Gly
¥-Glu-S-(B-methyl
naphthyl)Cys-Gly

Met-l eu-Phe

Sa-Androstanc-3f,
17B-diol hydrate
Cholic acid

lithocholic acid
Deoxycholic acid
Chenodeoxycholic acid
Corticosterone
Cymarin

B-Escin

2-Deecanoyl-4,6-diamino-
1,3,5-triazinc
Simazine

Code Compound Name
13 4,6-Dihydroxy-1,3,5-triazine-
2-acetic acid O-anisidide

Unconjugated aromatic acids

U1 Bis(4-chlorophenoxy)acetic

U2 2-4-Biphenyloxy)propionic

L3 2-{4-Fluorosulfonyh
phenoxyjacetic

U4 2-(4-Benzyloxyphenoxy)-2-
methylpropionic

us 2-{4-tert-Butylphenaxy)acetic
91 +Oxo-2-naphthalenehutyric
)7 2-{4-Aminophenoxyjacetic
L8 2-(4-Cinnamovlphenoxy)acetic

L9 2-(4-Formylphenoxylacetic

u1o Ibuprofen

Ll Indomethacin

L1z Indoprofen

u13 Fenoprofen

U4 {5)-6-Melhoxy-a-methyl-2-

naphthaleneacetate

U1s Gemfibrozit

ute Podocarpic acid

U7 Fenbufen

Xanthenes

X1 Erythrosin B

X2 Phloxine B

X3 Fluoresceinamine, isomer Il

X4 Pyrogallol red

X5 Fluorescein isothiocyanate,
isomer 1

X6 9-Phenyl-2,3,7-trihydroxy-6-
fluorone

X7 4-{6-Hydroxy-3-ox0-3H-

xanthen-9-vl)benzoic acid

X8 9-(4-(Dimethylaminojphenyl)-
2,6,7-Trihydoxy-3H-xanthen-3-
one sulfate

X9 6-Hydroxy-3-oxo-3H-xanthene-
9-propionic acid

X10 4-(2,4-Dichlorphenoxymethyl}-
6-hvdroxy-3H-xanthen-3-one
X11 Dimethyl 4-(6-hydroxy-3-oxo-

3H-xanthen-9yl) isophthalate

X12 2-(6-Hydroxy-3-ox0-311-
xanthen-9-yl)-cyclohexane-
carboxylic acid

Miscellaneous

71 1-Thio-B-D-glucose tetraacetate

72 Fconazole

Z3 Taxol

74 Ajmaline

75 6-Chloro-3-nitro-2H-chromene

76 Cholecalciferol

z7 1,1-Dibenzoylferrocene

Z8 2,5-Diphenyloxazale

Z9 Lthaverine

210 lodonitrotetrazalium Formazan

Z11 1-{Mesitylene-2-Sulfonyl)
Imidazole

712 Olivetol

About 75 % of randomly chosen compounds, including the wide range of siruciures shown here, generate fingerprints with the panel

detailed in Fig. 1.
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which are well diversified with regard to interactions
with small molecules. An important practical discovery
is that the diversity of interactions attainable with a
manageably-sized panel appears Lo account for most
possible modes of interaction, at least to a first approxi-
mation. To explore the scope of utility of these data for
predicting ligand binding, we attempted to model the
binding potency of a compound (i) for a specitied
target protein (T) by a computation performed on the
compound’s affinity fingerptint. Mathematically [2,3],
the computation consists of a linear combination of the
compound’s potencies against the reference panel of
proteins, Thus, the affinity of i for T is represented in
equation (1) as a summation of the binding potencies
to the reference proteins, weighted by statistically-
derived coefficients (CR). These coefficients, calculated
using data collected on the rarget’s interaction with a
small set of training compounds, provide the means to
compare the target’s binding properties to those of the
reference proteins. A single set of coefficients, which
constitutes the unique surrogate for cach target, is used
for predictions on all fingerprinted compounds. The
coeflicients are obtained by a standard method for
model selection commonly referred to as multivariate
stepwise linear regression.

n

log (ICsp0i,1 = & CRlog (IC,p)ixi  Equation (1)
=1

For this approach to be useful in practice a small panel
of reference proteins must suffice for fingerprinting
large libraries of compounds. An analogous fingerprint-
ing system is believed to underlie the olfactory system,
which can distinguish among millions of different odor-
ants using only a small pancl of recognition proteins. Ip
the case of ane species of fish studied using recombinant
IINA probes for the presumed olfactory receptors, the
pancl of olfactory receptors consists of only about 30
proteins [4]. For laboratory implementation, the number
of reference proteins in the panel should be this small, or
even smaller if possible. [t is thus clear that the panel
members must be selected for two propertes aside from
ease of assay. Each member must recognize a wide
variety of compounds, ensuring high coverage ot chem-
Lcal types, but the variety should be quite different for

Fig. 1. Binding reactivity fingerprints. Semi-guantitative 1C;,
values (gray scale defined at bottom) of the compounds in Table
i against eight reference proteins: A1, human glutathione 5-
transferase (GST) A1: R8, rat GST R8; $1, schistosome GST 51;
HF2, housefly GST HF2: DAQ, porcine p-amino acid oxidase;
BCh, equine butyryl cholinesterase; Pap, papain; PDL, snake
venom phosphodiesterase 1. Experimental binding values (Exp)
of the compounds to two different targets is compared to the
predictions (Fil) made by the fitted computational surrogates
described in Table 2. The two targets are yeast glutathione
reduclase (GRd) and aldehyde debydrogenase (AdDH). The first
12 compounds are the first iteration training compounds used
for both targels; verical bars mark the target-specific ten
additional compounds used for a second iteration filting.
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cach panel member, thereby mininuzing the redundancy
of the information obtained.

A small set of proteins that meet these criteria have been
used to fingerprint a structurally-diverse set of com-
pounds. By applying equation (1} to data derived from
testing target proteins against raming sets of compounds,
we have constructed surrogates of a variety of targets
with no previously known homology to any of the refer-
ence proteins. The fidelity of such computational surro-
gates to the actual protein is sufficient to allow
surprisingly reliable rank ordering of ligand binding
potencies across several log units. By contrast, the Adelity
of target models derived from X-ray crystallography
allows only the enrichment of high affinity compounds
over random selection, with no success ac all in rank
ordering. These results generalize fundamental questions
about the uniquencss of protein binding sites [1,3], and
suggest new approaches to defining the mechanisms by
which proteins bind small molecule ligands. The results
obtained so far suggest that the approach will have broad
practical utility by assisting in the discovery of ligands
that bind to proteins, for use in general biological
research as well as in drug design cfforts.

Results

Panel selection

Following preliminary testing of over 150 proteins
from a variety of sources. chosen in part because each
protein was expected to display broad cross-reactivity
with small organic molecules, we selected a set of eight
proteins to act as a reference panel for more detailed
study. These eight proteins were chosen based on the
diversity revealed in correlation tests comparing the
binding pattern of cach protein to the pattern seen for
all of the others when assayed against ligands compri
ing a wide range of structures. Using this panel of
eight proteins, affinity fingerprints can be obtained for
compounds from numerous conventionally-defined
chemical families. In a survey of several hundred small
organic molecules of diverse structure, abour 73 %
show detectable binding to at least one of these refer-
cnce proteins, and virtually none bind to more than
four reference proteins, a distribution approaching the
ideal defined by theorctical madels for the olfactory
receptor panel |6]. A representative sample of 122
structurally-varied compounds was used for this study
(Table 1), and the fingerprints obtained are shown

schematically in Fig. 1.

All of these reference proteins have easily assayable
enzymatic activity. A compound’s binding to each
protein was quantificd as the concentration needed to
inhibit 50 % of that protein’s activity (IC; ). Although
the subsequent analyses were conducted on the actual
numerical binding potencies, the precision of the assays
used for rapid fingerprinting of the compounds is not
substantially better than the gray scale in Fig. 1 indi-
cates. The 1Cs,, values obtained range over more than
tour log units, from 1000 UM to below 0,05 UM,

Training set assays

Once the reference panel was established, a subset of
12 compounds in the 122 compound fingerprint data-
base was chosen, because these compounds exhibited
the most diverse binding to the reference proteins.
These 12 compounds constitute an inital sct of rain-
ing compounds. The training set was physically assayed
tor inhibitory activity against two enzymes of possible
interest as targets for sensitizing tumors to cytotoxic
chemotherapy: glutathione reductase (GRd), and alde-
hyde dehydrogenase (AdDH). These two proteins are
unrclated to each other and to the reference proteins at
the Tevel of amino acid sequence, and their enzymatic
functions are also distinct.

None of the training compounds s a particularly potent
inhibitor against either of the targets. For each target,
however, different members of the training set are a lictle
better than the others, and thesc differences allow the
fitting of a computational surrogate for the target, as
defined by equation (1). This computer construct, which
reflects the parcial similarities of the various reference
protein binding values to the target’s binding values on
the training set, can be tested for its ability to
predict binding to the target by all other compounds
fingerprinted using the same reference panel.

For each target protein (GRd and AdDH), a different
computational surrogate was obtained. The surrogate was
then used to choose for each target a second set of 10
new compounds that were predicted to be more evenly
spread across the range of relevant potencies for
inhibitors of the target, with each case generating a dif-
ferent set of 10, Following empirical measurement of the
binding values for these sccond sets of compounds to
their respective targets, a second iteration computational
surrogate was calculated using the empirical data on all
22 compounds as a training set.

Predictions

TF'or both GRd and AdDH, the particular reference pro-
teins that were most heavily weighted in the firse itera-
tion continued to be prominent in the second iteration.
These second iteration surrogates applied to the remaim-
ing 100 compounds in the database provided predictions
which were then compared with the actual empirical
values measured separately (Fig. 2); the data on the fitted
and predicred values are also listed in Fig. 1. The associ-
ated statistical parameters, collated in Table 2, show sub-
stantial improvement between the first and second
iteration predictions. as measured by standard statistical
measures, especially the F-test [2].

Overall, the predictions provide a reliable rank ordering,
with a good fit all across the observed span of three log
units (from high to low micromolar potencey). as indi-
cated by dispersion factors (average scatter around the
regression line) of less than 0.5. The dispersion factors
partly reflect a known experimental error: in order to
collect a complete data set quickly and inexpensively, the
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Fig. 2. Correlation of experimentally-measured target binding with predictions. (a) Glutathione reduclase; (b) aldehyde dehyerogenase.

S

Symhols are defined in Table 1;
diamonds for clarity; the initial tr

majortty of the [Co ) values were caleulated by fitting a
line to single determinations of five serial dilution con-
centrations. We estimate from more extensive data col-
lected on o few compounds that about half of the

dispersion is arributable to assay error.

1o test the dependence of the predictions on the empiri-
cally-measured training data, we fitted computational
surrogates to a variety of random values. These control
experiments vielded no valid correlation with the actual
target data on the rest of the compounds. We also com-
pared the actual binding data to that predicted by an
arithmetic average of the reference proteins or to a more
sophisticated statistical average, the first principal compo-
nent. Again. there was no meaningful correlation. In short,
the results cannot be attributed to any simple type of sta-
nstical luctuation, a point reinforeed by the face that the

mbols for most of the compounds at the lower limit of measurable potency are replaced by gray
aining set compounds are in bold face.

overall predictive success was similar tor two targets that
differed markedly in all other aspects of the experiment.

Generality of surrogates

The titting procedure detined by equation (1) represents a
wiay to nimie an actual target protein by a combination
of the reference proteins. Using an evolving set of refer-
ence proteins, with the most recent panel comprising I8
proteins, we have attempted to create analogous surro-
gates for ~40 different proteins, Regression coetlicients in
the initial fitting were greater than (1.7 for over 30 of
them. At least some of the remaining cases are accounted
for by proteins to which essentially none of the trammg
compounds binds to any measurable degrec.

To explore the generality of the surrogates when apphed to
a much larger ibrary (over 3000 compounds fingerprinted

Table 2. Fitting procedures and statistical parameters of prediclions.

Enzyme Iteration Regression equation Statistical parameters
Rﬁl Siit Gpred Fpr:;'d i
Glutathione | 0.11BCh+0.19HF2+1.79 022 0.59 4.7
recuclase 1l 0.21BCh+0.72HF2+0.2481-0.05 0.85 041 0.46 159 !
Aldehyde t 0.55PDE+1.35 0.64 0.51 0.46 6.9
dehydrogenase il 0.38PDE+0.25R8+0.43 0.50 0.50 0.46 27.4

lirst and second-iteration computational surrogates of two targets described in Fig. 2 are created by linear re
ing sets of compounds between the target and a panel of reference proteins (codes in Fig. 13 Ry, is the cocfficient of multiple cor-
relation for the fitted data; oy, {dispersion) is the residual standard deviation for the fitted cquation; @,

ion ol data on train-

preq 15 the standard deviation of

the prediction errors when applying the fitted equation to the remainder of the data; T, measures the improvement of fit as the
ratio of dispersion for the current fit compared to the previous iteration, using random data as the initial comparison. i
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Fig. 3. Generality of computational surrogates. (a~d) 1C;, data for 5000 compounds were collected for the four indicated target pro-
teins. The correlation between a surrogate fit on data for 54 compounds {black diamonds} and the actual target on all compounds (gray
squares) is illustrated, along with the statistical parameters R, g and 6, which measure the overall correlation and dispersion respec-
tively. Lower limit of experimental quantitation is 2.5. For yeast o glucosidase, the structures of compounds indicated by black circles
in (d) are illustrated in {e) to indicale the diversity in structures for which binding was well predicted at several potency levels.



Affinity fingerprinting to predict ligand binding Kauvar et al.

using a reference pancl of 18 proteins), four proteius were
chosen for further study using automated cquipment to
measure hinding by competitive displacement of labeled
ligand, rather than by enzyme actvity as in the previous
experiments. For cach of these targets, data from a some-
what larger training set, consisting of 54 compounds, were
used in fitting the surrogates, whose fidelity for predicting
the binding to the rest of the 5000 compounds is illustrated
in Fig. 3. Quahtatively, the results are the same as those o
Iig. 2: the most striking quanticative difference 1s that the
larger library includes compounds that bind several of the
tirgets at potencies below 1 UM, extending the range over
which the surrogate’s fidelity has been confirmed. A further
quantitative ditference is that several more terms in the
sunimation 1 cquation (1) have non-zero coefticients for
these examples; tvpically about 7 of the possible 18 terms
were important, with the 35 most significant ones having
roughly equal weightings.

These four examples illustrate applications that would be
ditticult to pursue without an efficient surrogate screen-
ing system. In the first case, a surrogate for 1 moderately
high-affinity transporter site on serum albumin is calcu-
lated, demonstrating relevance of the technology to non-
catalytic proteins. Transport proteins are important for
determining biodistribution of compounds, which is
difficult to predict at present. Other transporters, such as
those postulated to affect oral absorption of drugs or
their passage across the blood brain barrier. mayv also be
accessible to study.

['he surrogate for housetly type 3 glutathione S-trans-
ferase (

iST) is expected to be useful for testing the
ability of the technology to discriminate among a large
fanitly of isozymes. A variety of reagents are available for
this study since we have previously used a focused
approach to combinatorial chemistry [7] to develop
sclective inhibitors of key human GST isozymes [8], an

approach which is proving useful in the development of

novel cancer chemotherapeutic agents |9,10]. An even
larger supertamily of isozymes are the protein kinases. As
a firststep in this arca, we have caleulated a surrogate for
glycerol kinase. As we seck leads for kinases involved in
signal transduction, we intend to use the glycerol kinase
surrogate s a rapid predictor for cross-reactivity that
would be expected to vesult m toxicity.

Finally, o glucosidase from yeast has been examined as a
readily available prototype for the corresponding human
sozyme, which 15 a target for development of antidia-
betic compounds, with additional potential utility for
antiviral and anticancer effects [11--13]. The structures of
several compounds with varving potency against this
target are drawn in Fig. 3, providing a further indication
of the variety of structures that are effectively handled by
the affinity fingerprinting system.

Characterizing chemical variety
[n the experiments on 5000 compounds, the librarv's
structural diversity 18 even larger than the ser in Table 1

including ~300 known drugs and ~100 bioactive peprides.
Trends observed in Fig. 1 persist in the larger database.
Overall, each compound has a unique fingerprint, despite
some degree of clumping not obviously related to
common structural motits. Conversely, compounds that
appear to have very similar structures may nonetheless
have very different fingerprints. In short, the fingerprints
constitute a highly empirical data set, which 1s not easily
explained by other criteria, confirming the widespread
experience of other investigators that binding of ligands to
proteins is very hard to predict. Having used a functionally
diverse set of compounds to select the reference panel, it
will be straightforward to reverse the logic and use the
panel to assess the functional diversity of other compound
librartes in an objective and quantitative manner.

To generate unique fingerprints for all of these com-
pounds, it was necessary to expand the reference panel
from 8 to 18 proteins, using similar criteria as before. As
with the smaller parel, none of the 18 reference protews
used in the fingerprinting process has any previously recog-
nizable similarity to the target protein. A convenient way to
analyze the functional characteristics of the panels used for
the experiments shown in Figs 2 and 3, in both relative and

absolute terms, 15 to examine the number of principal
components each panel provides. Principal components
analysis is a method for extracting rom large data matrices,
such as that shown in Fig. 1,2 minimal number of descrip-
tors that can account for variance in the data [3]. By
forming lincar combinations of experimental descriptors, a
new set of computed descriptors, the principal compo-
nents, i formed. If the experimental descriptors are all
highly correlated in their properties, then just one principal
component may account for greater than 93 % of the vari
ance in the data set: conversely, the niore uncorrelated the
individual experimental descriptors are, the larger the
number of principal components that are needed to

account for this high a percentage of the vartance. In
several other areas of research, this mathematical procedure
has proven helptul in identitying mechanistically reasonable
factors that account for the variance in the data.

For the panel of eight proteins in Tig. 1,95 % of the vari-
ance 1n the 122 compound data set is accounted for by 6
principal components, compared to 14 principal compo-
nents for the matrix of 18 proteins against 5000 com-
pounds. For both panels, therefore, the proteins are almost
completely uncorrclated m their binding properties. as
intended. The most substantive difference between the
panels is the absolute range of compounds vielding unique
fingerprints, which 1y ~753 % for the smaller panel and
~95 % for the larger panel.

Additional insight into the functonal characteristics of
the panels can be obtained by plotting the increments of
multi-dimensional variance accounted for by successive
principal components {Fig. 4). In spite of the fact that the
larger panel is able to fingerprint many more con-
pounds, the overall pattern of principal components is
similar in both cases, with the first principal component
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Fig. 4. Increments of multi-factorial
variance accounted for by successive
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accounting for a substantial portion of the data. The
factor described by this principal component presumably
corresponds to some nearly-universal feature ot small
molecule ligands binding to protcins. The remainig
principal components add smaller increments of infor-
mation, which taper oft smoothly. The small amount of
variance accounted for by the last tew principal compo-
nents is consistent with the difficulty we have encoun-
tered i finding new proteins that are sufficiently
independent of previously selected proteins to merit
inclusion in an expanded panel. In all, over 300 proteins
have now been evaluated to some degree as candidates
for expanding the panel. As far as we can tell, including
all of them in the panel would not materially change the
mumber or character of the principal components. These
results are also consistent with the surrogate-fitting
results. Faithful mimics can only be calculated because
new proteins tend to bind compounds in ways that are
already accounted for by the reference panel.

Discussion

We have demonstrated that appropriate combinations of
proteins from a reference panel selected for diversity in
binding characteristics can provide reasonable mimics of
other proteins. Such data had not previously been consis-
tently collected for any extensive group of proteins, and
thus no set suitable to act as a generic reference panel
had ever been identified [14]. Since the predictions from
the computational surrogates have proven effective across
a wide range of potencies, for compounds that differ in a
variety of characteristics, they cannot be a consequence
of airy known single feature, such as hydrophobicity, that
is relevant to binding of all ligands to any protein.
Hydrophobicity may, however, correspond to some part
of the highly-dominant first principal compenent. These
results, which are quite unexpected from comparisons of
single proteins to each other, suggest that there are
cryptic homologies among proteins that might be dis-
cernable statistically, even if they are not readily apparent
in any single pair-wise comparison. Identifying mecha-
nistic correlates for the major principal components pro-
vides a new, important, and quantitatively well-defined
challenge for computational chemistry. The fact that

only ~14 factors account for miost of the data offers
considerable hope for progress in this field.

Fundamental implications

Affinity fingerprinaing is a phenamenological method that
cannot by itselt provide a means for interpreting the com-
putational surrogates of proteins at the level of protein
structure. Nonctheless, by providing a quantitative measure
of similarity between proteins previously considered quite
unrelated, it provides an empirical benchmark for evaluat-
ll]g TICW \V(lys to C()IIIPJTC P]‘()tl.'i” structures. For L‘,\ll[l]pl(‘.
evolutionary arguments imply that actual protein struc-
tures are constrained by history to have significant piece
wise similarity [13]. Although such similaritics may be in
fragments too short to identfy reliably through primary
sequence alignment, they may be identifiable fron analysis
of secondary structures [16]. As such functionally-relevant
molecular features become better understood, the struc-

ture-based approach to drug design pioneered by X-ray
crystallographers [17] should become applicable to the
much larger set of proteins whose detailed structures are
not available,

Only a small minority of the proteins mcluded in our ref-
erence panels have as et been studied by crystallography.
To obtain some preliminary insight into possible factors
accounting for our results, we have therefore turned to an
examination of known protein structures, beginning with
a study of the amino-acid use in binding sites compared to
bulk protein [5]. As is well known, the central core of most
alabular proteins contains a high frequency of hydropho-
bic amino acids, while the surface contains predominantly
hydrophilic residucs. In a survey of 50 diverse crystal
structures, each of which has been solved with a bound
ligand in place, we discovered that the amino acids in close
proximity to the ligand are distinct from either of these
patterns. Large residues, such as Arg and Trp, are substan-
tially over-represcnted compared to their abundance in
bulk protein. greacly reducing the number of possible per-
mutarions of amine acids in binding sites compared to that
expected assuming all 20 were equally used. With only 4
few permutations, only a small reference panel should be
needed to represent the most common motifs. We are now



studying patterns of pair-wise interactions in this reduced
set i an effore to identfy recurring patterns that may
account for some of the principal components defined by
our phenomenological dara.

Computationally, the regression analysis used to predict
binding is analogous to the traditional drug design tech-
nique of quantitative  structure actvity rcl.ltionslnp
(QSARY [18]. but applicd to biochemical parameters
that relate more to the target protein than the tradivional
paramcters, which relate o physicochenncal properties
of the ligands. Conventional QSAR has established that
general physical features of ligands are important tor
binding to proteins, but its utility has largely been
lhmited o comparing compounds with quite similar
structural backbones [ 19,201,

Practical consequences

Affinity fingerprinting. like other computer methods for
quantitative chemical clussification, is inherently an effi-
clent approach to finding high-potency compounds. For
compartson, direct physical sereening, with thresholds set
at 1o 10 pM. vields compounds meriting further study
at arate of only about 0.01 %, or lower depending on
the diversity of the library. Examination of Figs 2 and 3
show that in cach of the fingerprinting examples, the
rate for correctly predicting compounds at this potency
level was about 70 .

This result compares quite favorably to the rate of about
{65 in one of the best-studied cases of caleulating
vstal
structure model [21]. Even with a high resolution strue-
ture avalable, our theoretical understanding ot how
ligands bind to proteins is currenty too limited to allow

binding cnergies by docking compounds mto a ¢

predictions that produce any meaningful correlation
coefficient in rank ordering of binding potencies. By
contrast, the empirically-driven fingerprinting approach
has yielded carrelation coefficients in the range of 0.7
for a variety of proteins. The limitations of pure compu-
tational methods do not appear to be related to available
computer size, which has grown exponentially for
decades without a corresponding improvement in pre-
diction accuracy. It seems more likely that what we know
how to compute is, as yet, fundamentally imcomplete.

In light of the theoretical efficiency of computational
methods, the chief practical advantage of the more bur-
densome direct screening methods is their completeness,
or low false negative rate. It is clear from inspection of Figs
2and 3 that reducing the false negative rate. by lowering
the threshold for selecting compounds, necessitates more
confirmatory screening to overcome the resulting higher
false positive rate. The trade-off between acceptable false
positive and false negative rates can thus be adjusted based
on the dithculty of follow-up sccondary assays.

Few drugs are acrually discovered in primary screening,
however, since refinement of the leads is gencrally needed,
it only to address issues of stability and manufacturing

Affinity fingerprinting to predict ligand binding Kauvar et al.

ease. Because comparison of leads with a diversity of
structures s highly advantageous during optinnzation
[22]. the range ol compounds that can be surveyed by
affinity fingerprinting is a particularly attractive feature.
Compounds successtully fingerprinted have come trom
conventional synthetic libraries, natural product libraries.
aud peptide combinatorial libraries, which have attracted
interest as a source of numerous, although not necessarily
diverse, chemicals 123]. Once a variety of leads with ditfer-

ent structures are avatlable. including both active and
imactive analogs, computational methods designed o
extract the key features of the ideal ligand (the pharma-
cophore) can be used to scarch structural formula data-
bases for other useful ligands, lowering the false negative
rate still further. Such three-dimensional database searches
are of limited utility as a primary screening tool, however.
since 13-20 high aflinity compounds are typically needed
to build a good pharmacophore madel {19].

Practical implementation

Affinity fingerprinting operates in two phases. In the
database vollection phase, a suitable reference panel of
proteins is assembled and assaved against a large library of
compounds, From these data, a small subset of com-
pounds with diverse fingerprints is chosen to act as a
training set. In the second phase. the following steps are
carried out tor each new target protein. First, the training
set 15 physically assayed against the target. The resulting
pattern of 1C, data is then compared to the patterns of
binding of the training compounds to the reterence pro-
teins. using stepwise linear regression software to caleu-
late a mathematical surrogate of the target. The surrogate,
an equation, is applied to the rest of the compounds in
the database to yield estimated binding potencies against
the target. Based on the predictons caleulated in this
manner, a collection of componnds s selected for a
second round of physical assays. This set is chosen to test
the accuracy of the surrogate across the full range of
potencies as well as to pick out the most promising coni-
pounds for further study. The surrogate can then be
revised iteratively.

By its nature, this search process is most efficiently
implemented by centralizing the database collection and
fingerprint analysis work, while leaving the target-specific
assay work as a highly-decentralized function. The technol-
ogy should thus be usable for exploring biological func-
tions of numerous proteins, in much the same way as
mutations are used today [24]. Aside from the commercial
utility of providing lead compounds for drug development,
this pharmacological approach to basic research offers more
tempora) control in regulating protein function than is nor-
mally possible by genetic methods, particularly in mamimals
for which conditional mutants are difficult to obtain.

Improvements

There are many ways i which it may be possible to
improve the fingerprinting process further, such as using
robotic techniques to increase throughput. We may also
be able to increase the absolute range of the panel, for
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example by using enzymes from the cellular toxic
defense network, which often show broad cross-
reactivity [25], or enzymatically silent binding proteins
such as antibodies [26].

Initially we used extrapolation of binding data from
moderate-quality training compounds from our initial
set to choose a second group of training compounds.
Additional iterations will allow us to use interpolation
between the values for the high-quality training com-
pounds discavered in the early rounds, which should be
more accurate. Data smoothing techniques [27] may also
help to overcome assay noise; recursive partitioning [28]
and non-linear fitting [29] may also prove useful in strik-
ing a compromise between accuracy in rejecting low-
affinity compounds and precision in predicting potency
of high-aftinity compounds. Deconvolution of multiple
mechanisms of binding, such as at the active site and at
an allosteric site, will benefit from more powerful tech-
niques than the very simple linear regression methods
used in this initial study.

It may be possible to increase the resolution of the
cross-reactivity classification system by methodically
adding binding proteins with overlapping specificities
[30], which should have a considerable advantage over
using individual antibodies as surrogates of drug targets,
as has previously been suggested [31]. Selecton of pro-
teins with suitably-nested specificities should be feasible
by probing recombinant libraries of proteins with
appropriately-diversified training sets of compounds.

Significance

The commonly-used physical representations of a
molecule’s structure do not directly indicate its
biological properties. For the most part, desirable
pharmacological effects result from non-covalent
binding to a target protein; unwanted side effects
may atise from cross-reactivity with other pro-
teins. A characteristic affinity fingerprint for a
particular molecule can be generated by assaying
its pattern of affinities towards a standardized
panel of proteins, chosen to be highly indepen-
dent in their binding properties. The fingerprint
can be used to estimate cross-reactivity more
generally, creating a new approach to estimating
toxicity early in the drug design process.

In its simplest application, this approach to
chemical classification provides an objective and
quantitative means of assessing functional diver-
sity of chemical libraries that is independent of
current methods, which are based on analysis of
structural formulae. It should therefore be useful
in selecting well-diversified core screening sets
from conventional chemical libraries, allowing
the existing limited quantities that exist for most
compounds to be conserved for follow-up
screening. It also provides a means to guide

combinatorial chemistry efforts towards con-
struction of libraries that provide high diversity,
not just large numbers.

Because the use of affinity fingerprints to con-
struct computational surrogates of target proteins
has proven useful for predicting binding of com-
pounds with a very wide range of structures, it
should be feasible to ‘translate’ products of com-
binatorial chemistry, including peptides, into
small organic molecules with desirable properties
for use as human therapeutics.

The inhercent efficiency of affinity fingerprinting
expands the scope of approachable drug targets by
drastically reducing the number of direct assays of
the target’s biological activity needed to discover
productive leads. This is particularly important
when the target protein has not been purified to
homogeneity, is unstable or is otherwise not avail-
able in adequate quantities for large scale screen-
ing, or when the assay procedure is complex and
costly, as is the case for targets relevant to many of
the major unmet medical needs.

Materials and methods

Reagents

Solutions were prepared using reagent grade matertals purchased
from several vendors. The compounds listed in Table T were pur-
chased from Aldrich Chemical Co. (Milwaukee, WIy. Sigma
Chemical Co. (St. Louis, MO}, or were synthesized at Terrapin
Technolagies [9]. For assay. the compounds were weighed, and
dissolved in water if soluble, otherwise in 100 % DMSQ, to
make a stock solution of 5 mM which was then diluted for assay.

Reference panel proteins

All glutathione S-transferases (GST, E.C. 2.5.1.18) were
recombinant homodimeric forms: provided by B. Mannervik
(Univ. Uppsala): human Al rac R8: provided by M. Syvanen
(LU C Davis): housetly HF2; from Pharmacia (as part of a fusion
protein cloning vector): schistosome S1.1»-Amino acid oxidase
from porcine kidney (DAO. C.C. 1.4.3.3) was from Sigma,
butyryl cholinesterase from horse serum (BCh, L.C. 3.1.1.8),
papain (Pap, E.C. 3.4.22.2), and snake venom phosphodi-
esterase | from Crotalus adamenteos (PDE, E.C. 3.1.4.1) were
from Worthington. The proteins used for the expanded panel
experiments summarized in Fig. 3 are qualitatively similar to
this core set, but include a variety of proprietary variants as
well (to be described elsewhere).

Target proteins

Yeast glutathione reductase (GRd.E.C. 1.6.4.2), aldehyde dehy-
drogenase (AdDH. E.C. 1.2.1.5), and human scrum albumin
(Cohn fraction V) were from Sigma. Yeast o glucosidase (E.C.
3.2.1.23), and Candida glycerol kinase (E.C.2.7.1.30) woere from
Bochringer Mannheim. Housefly HE3 GST ¢{ JLA8) way
obtained from M. Syvanen (UC Davis); for fitting this cnzyme,
the HF2 GST was not included in the reference pancl;
sequence homology to mammalian GST enzymes, which

contribute a small part to the fiting equation, is below 13 %
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Assays

GST activity was determined ina microplate assay using 1 mM
cach of GSH and 1-chloro-24-dintrobenzene (CDNB)
200 mM sodium phosphate. pH 6.8 [8]. Five-fold serial diln-
tions of each compound, from 250 UM to 0.4 UM, were tested.

The 30 % inhibition concentration (1C,) was caleulated trom

R
aJine ficed to the data: tor compounds with estimated 1Cg),

below 0.4 pM, additional dilutions were tested until the true
1C5,; was bracketed. BCh was assaved 1 30 mM sodium phos-
phate butfer. pH 7.2, containing 250 uM  5.5'-dithio-bis(2-
nitrobenzoic acid) and 250 pM S-buryrylchiocholine chloride
ar 30 Ceche absorbance was monitored at 403 nm for 3 min.
PDE activity was micasured at 405 nm for 3 min. The assay
mixture contatned 200 UM p-nicrophenyl thymidine-3-phos-
phace in 0,11 M Tris-HCL 0,11 M NaCland 15 mM MgCl,,
pH 8.9, Papain was dilured i 125 mM EDTA, D.07 mM
2-mercaploethanol and 6.25 mM cvseeine-HCand assayed in
200mM sodium phosphate. pH 6.8, conmining 100 UM
5-2302 (H-D-Pro-Phe-Arg-p-nicounilide) from Pharmacia
Hepar (Franklin, OH). Absorbance at 403 nm was measured
for 5 mm. DAQ activity was measured in a coupled reaction
with peroxidase at 405 nm. The assay contained 2 mM
poalanine, 0.23 mM o-dianisidine, and peroxidase in 0.02 M

sodium phosphate, pl 1 8.3,

GRd activity was determined in microplates ac 30 °C in 100 mM
potassium phosphate buffer pH 7.4, containing 1 mM EDTA,
0.2mM NAIDPH, and 0.5 mM oxidized glutathione (GSSG).
The reaction was followed by monitoring the absorbance
¢ar 340 nm as NADPH was consumed. AdDH activity
was measured m 0.0 M sodium phosphate, 1.3 mM  dithio-
threitol, pH 7.5 containing 125 UM acctaldehyde and 10 mM
NAD at 30 "C. Absorbance at 3H) mm was read for 3 min.

decre:

Assays for the experinients in Fig. 3 were designed for a high-
throughput robotic format. For each protein, a [luorescent
tracer was chosen that competes for binding with known
ligands for that protein. The 1C.,, in these cases represents dis-
placement of the tluorescent tracer, as measured by determin-
ing tluorescence palarization; free tracer tumbles in solution
faster than the fluorescent hifetime. causing a loss of polariza-
tion upon cmission. while tracer bound to a much larger
protein tmbles slowly enough to retain polarization [32]. A
customized 96-well plare reader for measuring fluorescence
polurizaton was  purchased from Jolley Consulting and
Research (Chicago, 1L}, Data from serial dilutions on each

compound (50, 5, 0.5 and 0,05 mg ml™") was fitted to a
four-parameter logistic function to estimace the 1Cy, .

The assays were performed i 0.1 M Na-phosphate buffer, pH
7.5. Each fluorescent tracer was diluted to give a signal-to-
noise ratio in tluorescence units of at Teast 100, typically requir-
ing a tracer concentraton of about 50 oM. The appropriate
protein was then added to a concentration sufficient to increase
tluotescence polarization by at least 0.1 polarization unit over
that of free racer, typically requiring about 10 tlg ml™" protemn.

Stepwise linear regression fitting

[n this method, an initial model which uses no predicrors is
first established, and predictors from the candidate seu (the ref-
erence proteins) are cvelically evaluated for inclusion in the
wodel. Candidates are removed if the associated F test value is
less than 4.0 (equivalent w a tstatistic of 2.0). Of the remain
ing candidates in each cycle, the reference protein with the
largest Fvalue (rightest overall clustering) is weighted into the

model (equation 1) by assigning the slope of the regression line
as that protein’s cocfficient. The process terminates when all
variables in the equation, bue none of the excluded variables,
have F statistics of at least 4.0, The F statistic 1s a ratio of the
dispersions for the predictor of interest compared to the best
ous prediction, using random data for the mitdal step. The

pl‘\"
dispersion 1s a measure of how tightly the data cluster around
the regression line comparing the test predictor (o the actual
data: clustering in turn is quantified as the average variance.
‘lable 2 summarizes the statistical parameters. caleulated using
the S plus v. 3.1 software package (StatSci. Seattle, WA).
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